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for a fixed value |z| = 1000. This rotation causes z to approach the
Stokes lines, which are near § = 1°. It is seen that for all orders the
relative errors are maximum near this region. In Fig. 2, comparisons
between truncation 1 and exact results are shown. The Wronskian
computations were done for m = 0, corresponding to n = 0. The
results clearly indicate that the truncation is subject to errors.

For commonly used practical microstrip configurations, the relation

L =kodv/e, —1< g

is well known [2]. Here d is the substrate thickness, €, is the relative
permittivity, and L is the electrical length. This will excite one TM
surface- and one TE leaky-wave pole [1]. For ¢, = 4, we find from
[9, Fig. 4] that 8, /ko o~ 2.7 — j8.0. Substituting these values in (1)
we get

(14)

@ 53355, (15)
As shown in [2, Figs. 1, 2, S5, 6}, lateral separations of p > 20X
are not uncommon in designing large arrays. Setting p = 20X in
(18) gives |z| ~ 1067. One can conclude from Figs. 1 and 2 that
truncations in the asymptotic series for H, éz) (z), for |z| > 1000, can
be subject to increased numerical errors.

Our results indicate that the Stokes phenomenon could eventually
dictate the accuracy of computing the mutual coupling for medium
or large microstrip arrays. Techniques such as the Borel summation
formula [8, pp. 405-408] appear applicable although much work
remains to be done in the future.

IV. SUMMARY

In this paper we have studied the effects of truncations of the
infinite asymptotic series for the Hankel function that appears in
the Sommerfeld integral for the microstrip Green’s function. For
large values of the complex argument z, such truncated expansions
can be inaccurate. This inaccuracy is a manifestation of the Stokes
phenomenon that depends both on the magnitude and phase of the
complex argument =, which depends on the substrate geometry and
the lateral separation between antennas. When z tends to a transition
(or distinguished) point 2, certain rays in the complex z plane are
crossed, across which the truncated asymptotic expansion is no longer
analytically continuable; these are called Stokes lines. This leads to
numerical inaccuracies that may manifest themselves in calculating
mutual coupling between widely separated elements in a microstrip
array. It has been found numerically that for |z| > 1000 the Stokes
phenomenon manifests itself when the Green’s function is computed;
hence, the mutual coupling between microstrip antennas. This value
generally corresponds to the dimensions of a medium-sized array
for electrically thin substrates with relatively low permittivities. To
rectify the Stokes phenomenon the Borel summation formula may
be used, but its application to the asymptotic evaluation of the
Sommerfeld integral remains a challenging topic for future research.
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A Fast Algorithm for Computing Field Radiated by an
Insulated Dipole Antenna in Dissipative Medium

Lin-Kun Wu, David Wen-Feng Su, and Bin-Chyi Tseng

Abstract— A fast algorithm for determining the near-field character-
istics of an insulated dipole antenna (IDA) embedded in a homogenous
dissipative medium is described in this paper. A thin-wire-approximation
type of analysis is followed here. In this case, radiation is considered to
originate from a filamentary current flowing along the axis of the dipole,
which is surrounded immediately by the ambient dissipative medium.
The translational symmetry inherent in the resultant radiation integrals
is then exploited to speed up the computation. In one case studied, the
basic thin-wire approach that uses no symmetry property is found to
yield accurate results in approximately 380 times less CPU time than
the traditional King-Casey approach. In another case, use of symmetry
property further reduces the CPU time by a factor of 7; additional
reduction in CPU time is possible by taking into account the near-field
pature of the problem.

I. INTRODUCTION

Analysis of the near field characteristics of an insulated dipole
antenna (IDA) is fundamental in the design and evaluation of
the heating performance of an interstitial microwave hyperthermia
system. For the field computation purpose, IDA’s may be classified as
being either uniformly or nonuniformly insulated. In this paper, a fast
computing algorithm will be developed explicitly for the uniformly
insulated IDA’s shown in Fig. 1, and extension to the nonuniformly
insulated IDA’s will also be described.

Two types of analysis have been employed in the past. In the
King-Casey analysis of the symmetrically fed, uniformly insulated
IDA shown in Fig. 1(a) [1], [2], the IDA is first treated as a lossy
transmission line while determining the antenna input impedance and
equivalent electric and magnetic current sources present over the
exterior surface of the insulating catheter. The latter are then used
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Fig. 1. Uniformly insulated dipole antennas used by (a) King et al. [1] and
Casey and Bansal [2] and (b) Zhang et al. [4], [5].

to compute the field radiated by the dipole. Extensions to IDA’s
having three insulating layers and asymmetrical feeding arrangement
can be found in [3] and [4], respectively. In these cases, the radiation
integrals are double integrals with very complicated integrands and,
therefore, are computationally demanding [5], [6].

An alternative method was developed and used by Iskander and
Tumeh to analyze the performance of multisectioned IDA’s [7]. In
this method, dipole is replaced by an equivalent filamentary current
flowing along the axis of the dipole and completely surrounded
by the dissipative ambient medium. As such, one-dimensional (1-
D) radiation integrals with much simpler integrands are obtained.
This approach is obviously computationally more efficient than the
traditional King-Casey approach. As will be shown in Section II,
with a careful arrangement. of the expressions associated with the
resulting radiation integrals, their inherent translational symmetry can
be identified and exploited to speed up the computation. Accuracy and
computational efficiency of the resultant algonthm will be presented
in Section IIIL

M. FORMULATION

Considering the problem geometry shown in Fig. 2 the actual
source of radiation is the current on the surface of the dipole
conductor of radius a, which is the same as the outer radius of the
outer conductor of the coaxial cable used to construct and feed the
IDA’s. The antenna junction is located at where the outer conductor
of the coaxial feedline is truncated for the IDA of Fig. 1(a) and at
the circumferential slot formed over the outer conductor of the short-
circuited coaxial feedline for the IDA of Fig. 1(b). In general, we
consider the IDA to be asymmetrically driven [4], i.e., h1 % ha. The
space between the dipole and catheter is assumed to be filled with
air such that £2 & £, = 8.854 x 107'% F/m. The catheter is assumed
to be lossless with a real permittivity 3. The ambient dissipative
medium is nonmagnetic and has a complex permittivity £4. Time
dependence of e/* is assumed and suppressed.

According to Iskander and Tumeh’s thin-wire approximations [7],
an equivalent field-radiating filamentary current source is assumed to
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Fig. 2. Structural geometry of the uniformly insulated dipole.

flow along the axis of the dipole and surrounded immediately by the
dissipative ambient medium. For the uniformly insulated IDA’s, the
resulting current distribution can be written as [4]
~osinkr(hi — |2'])
Sy ®
where —h) < 2 < Ofori =1and 0 < 2 < hy fori = 2. In
(1), the current at the antenna junction Iy and complex wavenumber
kr, are defined in [1].

Referring to the geometry shown in Fig. 3, the spherical electric
field components, dE'r and dEy, radiated from the current filament
I(z") d2' are obtained first [8], from which the spherical components
of the total electric field radiated can be found as

hg h2
Er =/ dEr =/
—hy —h
- @
ho ho N
‘Ep = / dEg = / I(z')(Frsin8" + Fycos0") dz'
—hy —hy

(3)

where 8" = ¢’ — and with 74 = (po/ca)*? and ks = jw(poeq)*?
being, respectively, the complex intrinsic impedance and wavenumber
of the ambient medium

(")

I(z")(Frcos8' — Fysin8”) d'

e~ IkaR in 1 z— 7

Fr = 2r (ﬁ + jws4R’3> R @
e~k (e 1 )

Fo = 4x ( r + E’—Z— + jw<€4R’3)ﬁ ®)

R =/p? +(z = )2 (6)
The corresponding cylindrical field components can be found from
E, =FEgrsinf 4+ Ej cos @ @)
E, =FErcosf — Egsinf. . ®)
For observers located along a Iongitudinal line with fixed p =

P, an examination of (4)—(6) reveals the following translational
symmetry properties associated with Fr and Fy

= o [ Frlpo,|z=7]) ifzg2
FR-—FR(poaz,Z>-'{_FR(pm‘Z_Z/D leZZ,

Fo = Fy(po, z;2') = Fo(po, |z — 2'|) forall z and 2".

&)
(10)

" Exploitation of this property to speed up the field computation process

is described next.
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Fig. 3. Radiation from a filamentary current source model of the IDA.

Considering that the filamentary current source is divided into M
segments of equal length Az’ and fields at N discrete locations of
constant spacing Az are to be determined along a given longitudinal
line. By requiring Az to be an integral multiple of Az’ and the
first (or, in fact, any one of the V) observer(s) to have the same z-
coordinate as that of the center of the first (or, any) source segment,
the z coordinates of any source-observer pair will be differed by
an integral multiple of Az, ie, forn = 1.2,--- N and m =
1.2,--- M

lzn — 2| = KAz, K =0.1.2,,Kpax (11

where R ax is determined by the ratio between Az and Az’ and the
maximum source-observer separation of interest. Given these, one
needs only to compute and store a set of Amax + 1F%’s and Fy’s
and recall them for repetitive use when evaluating the discrete form
of (2) and (3) for each of the N observers located along the given
longitudinal line.

HI. RESULTS

To validate the thin-wire approximations used in the present
method, the fields associated with a symmetrically-driven half-wave
IDA previously analyzed by Casey and Bansal [2] are examined first.
In this case, f = 915 MHz, ¢ = 0.47 mm, b = 0.584 mm,
c=08mm, hy = hy = 3.1 cm. €3 X g,. €3 = 178, €4 =
(42.5 — j0.88/w)=, (i.e., phantom brain tissue), and kr (m~') =
50.6 — 710.7. To assess the computational efficiency between the
King-Casey approach and Iskander—-Tumeh approach, Casey and
Bansal’s code (provided by Casey) and our code that uses no
symmetry property are run on an HP-9000/705 workstation. For E'.
data shown in Fig. 4, agreements between the two approaches are
excellent; this is also true, although not shown here for brevity, for
the corresponding E,’s and for the full-wave dipole case considered
in [2]. For comparison, CPU times required by Casey and Bansal’s
program (with an 1% convergence) and our program (with Az’ =1
mm) are 56.8 sec and (approximately) 0.15 s, respectively.

Next an asymmetrically driven IDA previously analyzed by Zhang
et al. [4, Fig. 5] is examined. In this case, f = 915 MHz, a =
0.47 mm, b = 0.584 mm. ¢ = 0.8 mm, h; = 14.0 cm, ke = 3.5 cm,
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the present method without using the symmetry property at three different
values of z.
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Fig. 5. Comparison of the normalized SAR obtained by Zhang ef al. [4] and
the present method using the symmetry property for observers located along
the p = 5 mm longitudinal line.

€2 R €0, €3 = 3.5%,. €4 = (1.0 — j1.28/w)e, (i.e., phantom
muscle tissue), and kr(m — 1) = 56.87 — §12.29. In Fig. 5, the
normalized SAR obtained by the present method using the symmetry
property for observers located along a longitudinal line of p = 5 mm
is compared to that reported by Zhang ez al. in [4, Fig. 5]. In our case,
Az = Az=1mm (M = N = 175) and K ...... = 173 are used.
Except for the slightly lower SAR’s found by the present method
over the z < 0 region, the agreement between the two approaches is
generally good; this also holds for the two other antennas studied by
Zhang et al. (see [4, Figs. 3 and 4]). The CPU times required by the
present method with and without the use of the symmetry property
are 0.3 s and 2.1 s, respectively, on an HP-9000/720 workstation.
Finally, the near-field nature of the problem indicates that the
field contributed by a given source segment decreases rapidly as its
separation from the observer increases. It is thus necessary to sum
contributions only from those source segments that are deemed close
enough to the observer. In doing so. the computational accuracy and
efficiency are determined by the degree of convergence desired. For
instance, with an 1% convergence required of both field components
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for the same example described in the previous paragraph, an
additional threefold reduction in CPU time was achieved.

IV. CoNCLUSION

The Iskander-Tumeh method of analysis has been demonstrated
to yield accurate results with a much less CPU time. Use of the
translational symmetry property to further improve its computational
efficiency are also demonstated. Additional saving in CPU time
is possible if the near-field nature of the problem is taken into
account. Numerical experience suggest that Az’ = 1 mm, Az > 1
mm, and a 1% field convergence rate should produce accurate SAR
with adequate spatial resolution. Since only the symmetry property
associated with Fr and Fy terms are exploited, this algorithm is also
applicable to nonuniformly insulated IDA’s, for which one needs only
replace (1) with appropriate section-dependent current distributions

[71.
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A Fast Integral Equation Technique for Shielded
Planar Circuits Defined on Nonuniform Meshes

George V. Eleftheriades, Juan R. Mosig, and Marco Guglielmi

Abstract— In this contribution, the groundwork is laid out for the
realization of efficient integral-equation/moment-method techniques, with
arbitrary types of basis functions, for the computer-aided design (CAD)
of geometrically complex packaged microwave and millimeter-wave in-
tegrated circuits (MMIC’s). The proposed methodology is based on an
accelerated evaluation of the Green’s functions in a shielded rectangular
cavity. Since the acceleration procedure is introduced at the Green’s
function level, it becomes possible to construct efficient shielded moment
method techniques with arbitrary types of basis-functions. As an example,
a Method of Moments (MoM) is implemented based on the mixed poten-
tial integral equation formulation with a rectangular, but nonuniform
and nonfixed, mesh. The entire procedure can be extended to multilayer
substrates.

1. INTRODUCTION

In the framework of the Method of Moments (MoM) for shielded
circuits, a major component of the CPU time is attributed to filling the
MoM matrix due to the large number of summation terms involved
[1]-[6]. To date, the most successful technique for addressing this
filling problem is by using the fast Fourier transform (FFT) [2]-{4].
Unfortunately, the FFT restricts the underlying discretization to a
fixed rectangular mesh with the corresponding subsection size limited
to an integral multiple of the basic cell size. For these reasons, the
FFT imposes restrictions to the accurate description of the geometries
to be analyzed. In addition, the basic cells size, and thus the order
of the FFT, are determined by the finest geometrical feature in the
circuit and this cannot always be the most efficient choice.

Herein, the groundwork is laid out for the realization of efficient
moment methods in a shielded environment with arbitrary types of
basis functions. This becomes possible due to the introduction of
a fast scheme for evaluating the Green’s functions in a rectangular
cavity. The technique begins by extracting the asymptotic part from
the usual two-dimensional (2-D) modal summation form of the
box Green’s function [4], [5]. The asymptotic part depends on the
frequency in a trivial manner and thus is expressed in terms of
frequency-independent summations. Subsequently, these frequency-
independent summations are transformed into a form that involves
the exponentially decaying Bessel functions of the second kind. This
enables to effectively collapse the original frequency-independent 2-
D sinusoidal series into one-dimensional (1-D) ones. Because the
acceleration process is applied at the Green’s function level, the
door opens to the realization of efficient MoM-based techniques with
arbitrary types of basis functions.

As an example, a particular moment method has been implemented
based on the mixed potential integral equation (MPIE) formulation
and a nonuniform/nonfixed rectangular mesh [5], [8]. At the MoM
level, special care is taken so that the interaction integrals involving
the modified Bessel functions are carried out in an optimum way.
Recently, an independent attempt was made in [6] to also accelerate
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